1. Shimokawa H. 2014 Williams Harvey Lecture: Importance of coronary vasomotion abnormalities-from bench to bedside. Eur Heart J 2014;35:3180–93.
    Crossref PubMed
  2. Yasue H, Takizawa A, Nagao M, et al. Long-term prognosis for patients with variant angina and influential factors. Circulation 1988;78:1–9.
    Crossref PubMed
  3. Ong P, Athanasiadis A, Hill S, et al. Coronary artery spasm as a frequent cause of acute coronary syndrome: The CASPAR (Coronary artery spasm in patients with acute coronary syndrome) study. J Am Coll Cardiol 2008;52:523–7.
    Crossref PubMed
  4. Kandabashi T, Shimokawa H, Miyata K, et al. Inhibition of myosin phosphatase by upregulated Rho-kinase plays a key role for coronary artery spasm in a porcine model with interleukin-1bCirculation 2000;101:1319–23.
    Crossref PubMed
  5. Shimokawa H, Takeshita A. Rho-kinase is an important therapeutic target in cardiovascular medicine. Arterioscler Thromb Vasc Biol 2005;25:1767–75.
    Crossref PubMed
  6. Shimokawa H, Ito A, Fukumoto Y, et al. Chronic treatment with interleukin-1b induces coronary intimal lesions and vasospastic responses in pigs in vivo. The role of platelet-derived growth factor. J Clin Invest 1996;97:769–76.
    Crossref PubMed
  7. Nishimiya K, Matsumoto Y, Shindo T, et al. Association of adventitial vasa vasorum and inflammation with coronary hyperconstriction after drug-eluting stent implantation in pigs in vivo. Circ J 2015;79:1787–98.
    Crossref PubMed
  8. Nishimiya K, Matsumoto Y, Takahashi J, et al. In vivo visualization of adventitial vasa vasorum of the human coronary artery on optical frequency domain imaging. Validation study. Circ J 2014;78:2516–8.
    Crossref PubMed
  9. Nishimiya K, Matsumoto Y, Takahashi J, et al. Enhanced adventitial vasa vasorum formation in patients with vasospastic angina: Assessment with OFDI. J Am Coll Cardiol 2016;67:598–600.
    Crossref PubMed
  10. Brown NK, Zhou Z, Zhang J, et al. Perivascular adipose tissue in vascular function and disease: A review of current research and animal models. Arterioscler Thromb Vasc Biol 2014;34:1621–30.
    Crossref PubMed
  11. Lehman SJ, Massaro JM, Schlett CL, et al. Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: The Framingham Heart Study. Atherosclerosis 2010;210:656–61.
    Crossref PubMed
  12. Montani JP, Carroll JF, Dwyer TM, et al. Ectopic fat storage in heart, blood vessels and kidneys in the pathogenesis of cardiovascular diseases. Int J Obes Relat Metab Disord 2004;28 Suppl 4:S58–65.
    Crossref PubMed
  13. Rosito GA, Massaro JM, Hoffmann U, et al. Pericardial fat, visceral abdominal fat, cardiovascular disease risk factors, and vascular calcification in a community-based sample: The Framingham Heart Study. Circulation 2008;117:605–13.
    Crossref PubMed
  14. Mazurek T, Zhang L, Zalewski A, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 2003;108:2460–6.
    Crossref PubMed
  15. Owen MK, Witzmann FA, McKenney ML, et al. Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: Influence of obesity. Circulation 2013;128:9–18.
    Crossref PubMed
  16. Antonopoulos AS, Sanna F, Sabharwal N, et al. Detecting human coronary inflammation by imaging perivascular fat. Sci Transl Med 2017;398:9.
    Crossref PubMed
  17. Mazurek T, Kobylecka M, Zielenkiewicz M, et al. PET/CT evaluation of 18F–FDG uptake in pericoronary adipose tissue in patients with stable coronary artery disease: Independent predictor of atherosclerotic lesions’ formation? J Nucl Cardiol 2017;24:1075–84.
    Crossref PubMed
  18. Tarkia M, Saraste A, Stark C, et al. [18F]FDG Accumulation in Early Coronary Atherosclerotic Lesions in Pigs. PloS One 2015;10:e0131332.
    Crossref PubMed
  19. Ohyama K, Matsumoto Y, Amamizu H, et al. Association of coronary perivascular adipose tissue inflammation and drug-eluting stent-induced coronary hyperconstricting responses in pigs: 18F-fluorodeoxyglucose positron emission tomography imaging study. Arterioscler Thromb Vasc Biol 2017;37:1757–64.
    Crossref PubMed
  20. Alexopoulos N, McLean DS, Janik M, et al. Epicardial adipose tissue and coronary artery plaque characteristics. Atherosclerosis 2010;210:150–4.
    Crossref PubMed
  21. Cheng VY, Dey D, Tamarappoo B, et al. Pericardial fat burden on ECG-gated noncontrast CT in asymptomatic patients who subsequently experience adverse cardiovascular events. JACC Cardiovasc Imaging 2010;3:352–60.
    Crossref PubMed
  22. Ohyama K, Matsumoto Y, Nishimiya K, et al. Increased coronary perivascular adipose tissue volume in patients with vasospastic angina. Circ J 2016;80:1653–6.
    Crossref PubMed
  23. Ito T, Fujita H, Ichihashi T, et al. Impact of epicardial adipose tissue volume quantified by non-contrast electrocardiogram-gated computed tomography on ergonovine-induced epicardial coronary artery spasm. Int J Cardiol 2016;221:877–80.
    Crossref PubMed
  24. Ohyama K, Matsumoto Y, Shimokawa H. Impact of epicardial adipose tissue volume quantified by non-contrast electrocardiogram-gated computed tomography on ergonovine-induced epicardial coronary artery spasm. (Letter to the Editor) Int J Cardiol 2017;229:40.
    Crossref PubMed
  25. Ohyama K, Matsumoto Y, Takanami K, et al. Coronary adventitial and perivascular adipose tissue inflammation in patients with vasospastic angina. J Am Coll Cardiol 2018;71:414–25.
    Crossref PubMed
  26. Oikonomou EK, Marwan M, Desai MY, et al. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): A post-hoc analysis of prospective outcome data. Lancet 2018;392:929–39.
    Crossref PubMed
  27. Tawakol A, Migrino RQ, Bashian GG, et al. In vivo 18F-fluorodeoxyglucose positron emission tomography imaging provides a noninvasive measure of carotid plaque inflammation in patients. J Am Coll Cardiol 2006;48:1818–24.
    Crossref PubMed
  28. Bucerius J, Mani V, Wong S, et al. Arterial and fat tissue inflammation are highly correlated: a prospective 18F-FDG PET/CT study. Eur J Nucl Med Mol Imaging 2014;41:934–45.
    Crossref PubMed
  29. Christen T, Sheikine Y, Rocha VZ, et al. Increased glucose uptake in visceral versus subcutaneous adipose tissue revealed by PET imaging. JACC Cardiovasc Imaging 2010;3:843–51.
    Crossref PubMed
  30. Hong HC, Hwang SY, Park S, et al. Implications of pericardial, visceral and subcutaneous adipose tissue on vascular inflammation measured using 18FDG-PET/CT. PloS One 2015;10:e0135294.
    Crossref PubMed
  31. Nishimiya K, Matsumoto Y, Uzuka H, et al. Focal vasa vasorum formation in patients with focal coronary vasospasm – An optical frequency domain imaging study. Circ J 2016;80:2252–4.
    Crossref PubMed
  32. Koyama J, Yamagishi M, Tamai J, et al. Comparison of vessel wall morphologic appearance at sites of focal and diffuse coronary vasospasm by intravascular ultrasound. Am Heart J 1995;130:440–5.
    Crossref PubMed
  33. Uzuka H, Matsumoto Y, Nishimiya K, et al. Renal denervation suppresses coronary hyperconstricting responses after drug-eluting stent implantation in pigs in vivo through the kidney-brain-heart axis. Arterioscler Thromb Vasc Biol 2017;37:1869–80.
    Crossref PubMed
  34. Amamizu H, Matsumoto Y, Morosawa S, et al. Important roles of cardiac lymphatic vessels in the regulation of coronary vasomotion after DES implantation in pigs in vivo. Eur Heart J 2018;39:ehy565.2435.
    Crossref
  35. Arngrim N, Simonsen L, Holst JJ, et al. Reduced adipose tissue lymphatic drainage of macromolecules in obese subjects: A possible link between obesity and local tissue inflammation? Int J Obes (Lond) 2013;37:748–50.
    Crossref PubMed
  36. Antonopoulos AS, Margaritis M, Coutinho P, et al. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: The regulatory role of perivascular adipose tissue. Diabetes 2015;64:2207–19.
    Crossref PubMed
  37. Margaritis M, Antonopoulos AS, Digby J, et al. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 2013;127:2209–21.
    Crossref PubMed